| 
        
        
        
        
            ±âÇÏÇÐÀû ÇüŸ¦ ÀÌ¿ëÇÑ µµÁ¦ º®°Å¿ï µðÀÚÀο¡ °üÇÑ ¿¬±¸   Study on Ceramic Wall Mirror Design 
Using Geometric Figures     È«ÀÍ´ëÇб³ »ê¾÷¹Ì¼ú´ëÇпø ÀÌÁöÇý ¼®»çÇÐÀ§³í¹® Áöµµ±³¼ö ¿ì°üÈ£   2004³â 6¿ù 30ÀÏ      ±¹¹®ÃÊ·Ï = ¥¡ 
¸ñÂ÷ = ¥£ 
ÀÛǰ¸ñÂ÷ = ¥¤ ¥°. ¼·Ð = 1 1. ¿¬±¸ ¸ñÀû = 1 
    2. ¿¬±¸ ¹æ¹ý ¹× ¹üÀ§ = 2 
¥±. º»·Ð = 3 
    1. ÀÛǰÀÇ ¹è°æ = 3 
     °¡. °Å¿ïÀÇ ÀϹÝÀû °íÂû = 3 
       (1) °Å¿ïÀÇ ±â¿ø°ú º¯Ãµ»ç = 3 
       (2) °Å¿ïÀÇ Á¾·ù ¹× ºÐ·ù = 7 
       (3) Çö´ëÀÇ º®°Å¿ï = 9 
     ³ª. µðÀÚÀÎ ¼ÒÀçÀÇ ºÐ¼® = 12 
       (1) ±âÇÏÇÐÀû ÇüÅÂÀÇ °³³ä°ú ¿ª»ç = 12 
       (2) ±âÇÏÇÐÀû ÇüÅÂÀÇ Æ¯Â¡ = 17 
       (3) Çö´ë¹Ì¼ú¿¡ ³ªÅ¸³ª´Â ±âÇÏÇÐÀû ÇüÅ = 19 
   2. ÀÛǰÀÇ Á¦ÀÛ = 24 
     °¡. ÀÛǰÀÇ µðÀÚÀÎ °èȹ = 24 
     ³ª. Á¦ÀÛ °úÁ¤ = 27 
       (1) ¼ÒÁö = 27 
       (2) ¼ºÇü = 27 
       (3) ¼Ò¼º ¹× ½ÃÀ¯(ã¿ë¸) = 28 
   3. ÀÛǰ·Ð = 29 
¥². °á·Ð = 43 
Âü°í¹®Çå = 45 
Abstract = 47  At an age when human beings had no mirrors, people 
thought shadows were reflections of themselves. Human beings have been so keen 
about their appearances, and tried various ways to check their own look using 
flat surface of water or flat stones. Thus, mirrors have been one of the most 
commonly used items in daily lives. Mirrors have meant more than an item to 
reflect things, sometimes it meant lessons from life, sometimes it offered 
people chances to look back their own lives, or sometimes it meant unlimited 
imagination and sensation. The fascinating item reflects not only the physical 
appearance of thins but also deep psychological factors such as values, personal 
lives, or emotion.
 However, in modern days, most mirrors serve only one 
dimensional function reflecting figures of an object, and remain as one of the 
simple, standardized form of furniture. So the purpose of this thesis is to 
search the potential of mirrors to become a unique and individual art craft, 
setting them apart from the existing concept of being functional and 
formal.
 The writer picked geometrical figures as a subject material to 
highlight simplicity and moderation and to express cheerfulness.
 Geometrical 
figures are a very unique form of art representing mathematical interpretation 
of the world around human beings. Using thls unique analysis and interpretation, 
the writer tried to emphasize the design factors of geometrical figures and give 
them a new touch of familiarity.
 The writer formed a frame using geometrical 
units such as cylinders, tetrahedrons, and cubes, and then decorated the surface 
with geometrical pattern. A "Pattern" means a plan, diagram, or model to be 
followed in making things and if it's used as a verb, it means 'To make, mold, 
or design by following a pattern' It also means a consistent, characteristic 
form, style, or method. Patterns invoke a touch of repetition or 
diversity.
 High resolution coloring paint was applied to give a striking 
contrast in color. The frame with geometrical units was mounted on a mirror, 
forming a simple and outstanding shape of a wall mirror.
 In summary, the 
first chapter describes the concept, history, types, and classification based on 
functions and material of mirrors as well as modern wall mirrors to rationalize 
the purpose of this thesis. In this chapter, the general concept and history of 
geometrical figures were studied to identify the characteristics and examples of 
geometrical figures in modern art.
 In the second chapter, design related 
background of the work and __EXPRESSION__al techniques, glaze, and the way the work 
baked are explained.
 In the third chapter, more detailed explanation was done 
on the work piece based on the content of research results shown in chapter 1 
and 2.
      °Å¿ïÀÌ ¾ø¾ú´ø ¿¾³¯ Àΰ£Àº ±×¸²ÀÚ¸¦ ÀÚ½ÅÀÇ ºÐ½ÅÀ̶ó°í »ý°¢Çß¾ú´Ù. Àΰ£Àº ÀÌ¹Ì ¼±»ç½Ã´ëºÎÅÍ 
ÀÚ½ÅÀÇ ¸ð½À¿¡ °ü½ÉÀ» °®±â ½ÃÀÛÇß°í °í¿© ÀÖ´Â ¹°À̳ª ÆíÆíÇÑ ¸ð¾çÀÇ µ¹°ú °°Àº ¿©·¯ ¼ö´ÜÀ» ÀÌ¿ëÇÏ¿© ÀÚ±âÀÇ ¾ó±¼À» ºñÃ纸¾Ò´Ù. ÀÌó·³ °Å¿ïÀº 
Àΰ£ÀÌ ¹Ì(Ú¸)¿¡ °ü½ÉÀ» °¡Áö¸é¼ºÎÅÍ Áß¿äÇÑ »ýȰ¿ëǰÀ¸·Î ÀÚ¸® Àâ¾Æ ¿Ô´Ù. °Å¿ïÀº º»·¡ ¹Ý»çÇÏ¿© »ç¹°À» ºñÃß´Â ±â´ÉÀ» ÇÏ´Â °¡±¸ Áß¿¡ 
ÇϳªÀÌÁö¸¸ ¶§·Î´Â Àΰ£À¸·Î ÇÏ¿©±Ý ¸ð¹üÀ̳ª ±³ÈÆÀ» ÁÖ´Â »ç½ÇÀ» ÀǹÌÇϱ⵵ ÇÏ°í ¹«ÇÑÇÑ »ó»ó°ú °¨µ¿ ±×¸®°í Àڱ⠼ºÂûÀÇ ±âȸ¸¦ Á¦°øÇØ Áֱ⵵ 
ÇÑ´Ù. Áï °Å¿ïÀº ¿ÜÇüÀûÀÎ ¸ð½À¸¸À» ºñÃß¾î º¸´Â °ÍÀÌ ¾Æ´Ï¶ó ¼û°ÜÁ® ÀÖ´Â °¡Ä¡°ü°ú °³ÀÎÀÌ »ì¾Æ¿Â »î, ³»¸éÀÇ ½É¸®»óÅ µî Àΰ£ÀÇ Á¤½ÅÀûÀÎ ¸é±îÁö 
¹Ý¿µÇÏ´Â ½ÅºñÇÑ ¹°°ÇÀ̶ó ÇÒ ¼ö ÀÖ´Ù.
 ±×·³¿¡µµ ºÒ±¸Çϰí Çö´ëÀÇ °Å¿ïÀº ¾ó±¼À» ºñÃß¾î º¸´Â ÀÏÂ÷ÀûÀÎ ±â´É¿¡ ¸Ó¹°·¯ ÀÖÀ¸¸ç °¡±¸ÀÇ ÀϺηΠ
¿©°ÜÁ® ´ÜÁ¶·Ó°í ȹÀÏÈµÈ ÇüÅÂÀÇ °ÍÀÌ ´ëºÎºÐÀÌ´Ù. µû¶ó¼ º» ³í¹®¿¡¼´Â Çö´ë °Å¿ïÀÇ ±â´ÉÀû, ÇüÅÂÀû ´Ü¼ø¼º¿¡¼ ¹þ¾î³ª °³¼ºÀûÀÌ°í µ¶Æ¯ÇÑ 
¿¹¼ú°¡±¸·Î¼ÀÇ °¡´É¼ºÀ» ¸ð»öÇϴµ¥ ÁÖ¾ÈÁ¡À» µÎ¾ú´Ù.
 °Å¿ï ¿ÜÇüÀÇ µðÀÚÀÎÀ» À§ÇØ °£°áÇϰí ÀýÁ¦µÈ ´À³¦À» ºÎ°¢½ÃŰ°í °æÄèÇÑ À̹ÌÁö¸¦ Ç¥ÇöÇÒ ¼ö 
ÀÖ´Â ±âÇÏÇÐÀû ÇüŸ¦ ¼ÒÀç·Î ¼±ÅÃÇÏ¿´´Ù. ¡¸±âÇÏÇÐ ÇüÅ¡¹ ´Â Àΰ£ÀÇ µµ±¸¿¡ ÀÇÇØ¼ ºÐ¼®µÇ°í ÀçÇöµÇ¸ç Ç×»ó ¼öÇÐÀû ¹ýÄ¢À» µ¿¹ÝÇÏ´Â µ¶Æ¯ÇÑ ¿¹¼ú 
¼ÒÀç¶ó ÇÒ ¼ö ÀÖ´Ù. ÀÌ·¯ÇÑ Æ¯Â¡À» ÀÌ¿ëÇÏ¿© ±âÇÏÇÐÀû ÇüŰ¡ °¡Áö°í ÀÖ´Â µðÀÚÀÎ ¿ä¼Ò·Î¼ÀÇ °¡´É¼ºÀ» È®ÀÎÇÏ°í ½Ç»ýȰ¿¡ Àû¿ë½ÃÅ´À¸·Î¼ º¸´Ù Ä£±Ù°¨ 
ÀÖ´Â ¼ÒÀç·Î ¹ßÀü½Ã۰íÀÚ ÇÏ¿´´Ù.
 µðÀÚÀÎÀÇ ±âº»¹æÇâÀº ¿øÁÖ, »ç¸éü, À°¸éü µîÀÇ ±âÇÏÇÐ À¯´ÏÆ®(unit)¸¦ ÀÌ¿ëÇÏ¿© ÇüŸ¦ ¸¸µé°í ±âÇÏÇÐ 
ÆÐÅÏ(pattern))À¸·Î Ç¥¸éÀå½ÄÀ» ÇÑ ÈÄ °íȵµ ¹ß»ö ¾È·á¿¡ ÀÇÇÑ »ö(color)ÀÇ ´ëºñ µîÀ» ÀÌ¿ëÇØ ¿ÜÇüÀ» Á¦ÀÛÇÏ´Â ¼ø¼·Î 
¼³Á¤ÇÏ¿´´Ù.
 Á¦ÀÛµÈ ¿ÜÇü Áï ÇÁ·¹ÀÓ¿¡ °Å¿ïÀ» Á¢¸ñ½ÃÄÑ °£°áÇÏ¸é¼ ¸íÈ®ÇÑ Á¶ÇüÀÇ º®°Å¿ïÀ» Á¦ÀÛÇÏ¿´´Ù.
 º»·ÐÀÇ ³»¿ëÀ» ¿ä¾àÇØ 
º¸¸é,
 1Àå¿¡¼´Â °Å¿ïÀÇ °³³ä ¹× ÀϹÝÀû ¿ª»ç, Á¾·ù, ±â´É°ú ÀçÁú¿¡ µû¸¥ ºÐ·ù µîÀ¸·Î ³í°Å¸¦ È®º¸ÇÏ¿´À¸¸ç Çö´ë º®°Å¿ïÀÇ ÇöȲ°ú Ư¡¿¡ 
´ëÇØ °íÂûÇÏ¿© ¿¬±¸ÀÇ °³¿¬¼ºÀ» È®ÀÎÇÏ¿´´Ù.
 ¶ÇÇÑ µðÀÚÀÎ ¼ÒÀçÀÎ ±âÇÏÇÐÀû ÇüÅÂÀÇ ÀϹÝÀûÀÎ °³³ä°ú ¿ª»ç¸¦ ÅëÇØ ±× Ư¡À» ¾Ë¾Æº¸°í Çö´ë¹Ì¼ú¿¡ 
Àû¿ëµÈ »ç·Ê µîÀ» »ìÆìº¸¾Ò´Ù.
 2Àå¿¡¼´Â ÀÛǰÀÇ µðÀÚÀÎ ¹è°æÀ» Á¦½ÃÇϰí ÀÛǰ¿¡ »ç¿ëµÈ ¼ÒÁö ¹× Ç¥Çö±â¹ý, À¯¾à, ¼Ò¼º ¹æ¹ý µîÀ» 
¼³¸íÇÏ¿´´Ù.
 3Àå¿¡¼´Â 1Àå, 2ÀåÀÇ ¿¬±¸ °á°ú¸¦ Åä´ë·Î Á¦ÀÛµÈ ÀÛǰÀÇ ±¸Ã¼ÀûÀÎ ³»¿ëÀ» ÇØ¼³ÇÏ¿´´Ù.
 |